

# Modular RICH Simulation -Delta Ray Electron

Cheuk-Ping Wong
Georgia State University
12-07-2015



## Simulation Setup

- Single Muon, 20GeV
- Aerogel
  - 1 cm thick
  - Refractive index=1.05
- Magnetic field
  - $-(B_x, B_y, B_z)=(0, 1.5, 0)T$
- Hit type = eic\_rich



## **Event Display**



- An electron has been ionized. It passes through the back of aerogel several times
- Fresnel lens holder is blackened for better visualization



## z-position of Hits (Non-Photon)





#### **Z-Position of Hits vs. PID**

- Two entries of muon hits
  - At the back of aerogel
  - photonsensor
- One entry of delta ray e-
  - At the back of aerogel

## Hit Position at the Back of Aerogel (Non-Photon)







#### Hit Position at the back of aerogel: out\_y VS. out\_x

- mu- hit is close to the origin of x-y plane
- E- hit is at a higher y-position which mataches the event display (shown on the right)

## Z-position of Vertex (non-photon)



#### <u>Vertex of delta ray electron – Vz VS. PID</u>

- Two entries of vertex position are recorded for muon. Both are at vz=0 which is the launching position of muon
- One entry of e- vertex position are recorded



The back of the aerogel



## Summary

- A single particle can create more than one hits with different hit positions (out\_z)
- However, there will be redundant record of vertex (vz)

→Hit position cut is needed to reduced double count



### Next

- What if the particle re-enter the aerogel?
  - Extra out\_z recorded?